Internet Engineering Task T0C

K. Z Ed.
Force yp, Ed
Internet-Draft SitePen (USA)
Intended status:

Informational G. Court

November 22,

Expires: May 26, 2011 2010

A JSON Media Type for Describing the Structure and Meaning of JSON
Documents
draft-zyp-json-schema-03

Abstract

JSON (JavaScript Object Notation) Schema defines the media type
"application/schema+json", a JSON based format for defining the
structure of JSON data. JSON Schema provides a contract for what JSON
data is required for a given application and how to interact with it.
JSON Schema is intended to define validation, documentation, hyperlink
navigation, and interaction control of JSON data.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on May 26, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

il

>

o

@

[

|«©

Introduction

Conventions

Overview

3.1. Terminology

3.2. Design Considerations

Schema/Instance Association

4.1. Self-Descriptive Schema

Core Schema Definition

5.1. type

5.2. properties

5.3. patternProperties

5.4. additionalProperties

5.5. items

5.6. additionalItems

5.7. required

5.8. dependencies

5.9. minimum

5.10. maximum

5.11. exclusiveMinimum

5.12. exclusiveMaximum

5.13. minItems

5.14. maxItems

5.15. uniqueItems

5.16. pattern

5.17. minLength

5.18. maxLength

5.19. enum

5.20. default

5.21. title

5.22. description

5.23. format

5.24. divisibleBy

5.25. disallow

5.26. extends

5.27. id

5.28. $ref

5.29. $schema

Hyper Schema

1 links

6.1.1. Link Description Object

6.2. fragmentResolution
6.2.1. slash-delimited fragment resolution
6.2.2. dot-delimited fragment resolution

6.3. readonly

6.4. contentEncoding
6.5. pathStart
6.6. mediaType

Security Considerations

IANA Considerations

8.1. Registry of Link Relations
References

9.1. Normative References
9.2. Informative References
Appendix A. Change Log
Appendix B. Open Issues

1. Introduction TOC

JSON (JavaScript Object Notation) Schema is a JSON media type for
defining the structure of JSON data. JSON Schema provides a contract
for what JSON data is required for a given application and how to
interact with it. JSON Schema is intended to define validation,
documentation, hyperlink navigation, and interaction control of JSON
data.

2. Conventions TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY'", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

3. Overview TOC

JSON Schema defines the media type "application/schema+json" for
describing the structure of other JSON documents. JSON Schema is JSON-
based and includes facilities for describing the structure of JSON
documents in terms of allowable values, descriptions, and interpreting
relations with other resources.

JSON Schema format is organized into several separate definitions. The
first definition is the core schema specification. This definition is
primary concerned with describing a JSON structure and specifying valid
elements in the structure. The second definition is the Hyper Schema
specification which is intended define elements in a structure that can
be interpreted as hyperlinks. Hyper Schema builds on JSON Schema to
describe the hyperlink structure of other JSON documents and elements
of interaction. This allows user agents to be able to successfully
navigate JSON documents based on their schemas.

Cumulatively JSON Schema acts as a meta-document that can be used to
define the required type and constraints on property values, as well as
define the meaning of the property values for the purpose of describing
a resource and determining hyperlinks within the representation.

An example JSON Schema that describes products might look like:

{

"name" :"Product",
"properties":{
|lid||:{
"type":"number",
"description":"Product identifier",
"required":true

}I
"name": {
"description":"Name of the product",
"type":"string",
"required":true
3
"price":{
"required":true,
"type": "number",
"minimum":Q,
"required":true
}I
"tags":{
"type":"array",
"items":{
"type":"string"
}
}
3
"links":[
{
"rel":"full",
"href":"{id}"
}I
{
"rel":"comments",
"href":"comments/?id={id}"
}
]

}

This schema defines the properties of the instance JSON documents, the
required properties (id, name, and price), as well as an optional
property (tags). This also defines the link relations of the instance
JSON documents.

3.1. Terminology TOC

For this specification, schema will be used to denote a JSON Schema
definition, and an instance refers to a JSON value that the schema will
be describing and validating.

3.2. Design Considerations TOC

The JSON Schema media type does not attempt to dictate the structure of
JSON representations that contain data, but rather provides a separate
format for flexibly communicating how a JSON representation should be
interpreted and validated, such that user agents can properly
understand acceptable structures and extrapolate hyperlink information
with the JSON document. It is acknowledged that JSON documents come in
a variety of structures, and JSON is unique in that the structure of
stored data structures often prescribes a non-ambiguous definite JSON
representation. Attempting to force a specific structure is generally
not viable, and therefore JSON Schema allows for a great flexibility in
the structure of the JSON data that it describes.

This specification is protocol agnostic. The underlying protocol (such
as HTTP) should sufficiently define the semantics of the client-server
interface, the retrieval of resource representations linked to by JSON
representations, and modification of those resources. The goal of this
format is to sufficiently describe JSON structures such that one can
utilize existing information available in existing JSON representations
from a large variety of services that leverage a representational state
transfer architecture using existing protocols.

4. Schema/Instance Association TOC

JSON Schema instances are correlated to their schema by the
"describedby" relation, where the schema is defined to be the target of
the relation. Instance representations may be of the "application/json"
media type or any other subtype. Consequently, dictating how an
instance representation should specify the relation to the schema is
beyond the normative scope of this document (since this document
specifically defines the JSON Schema media type, and no other), but it
is recommended that instances specify their schema so that user agents
can interpret the instance representation and messages may retain the
self-descriptive characteristic, avoiding the need for out-of-band
information about instance data. Two approaches are recommended for
declaring the relation to the schema that describes the meaning of a
JSON instance's (or collection of instances) structure. A MIME type
parameter named "profile" or a relation of "describedby" (which could
be defined by a Link header) may be used:

Content-Type: application/my-media-type+json;
profile=http://json.com/my-hyper-schema

or if the content is being transferred by a protocol (such as HTTP)
that provides headers, a Link header can be used:

Link: <http://json.com/my-hyper-schema>; rel="describedby"

Instances MAY specify multiple schemas, to indicate all the schemas
that are applicable to the data, and the data SHOULD be valid by all
the schemas. The instance data MAY have multiple schemas that it is
defined by (the instance data SHOULD be valid for those schemas). Or if
the document is a collection of instances, the collection MAY contain
instances from different schemas. When collections contain
heterogeneous instances, the "pathStart" attribute MAY be specified in
the schema to disambiguate which schema should be applied for each item
in the collection. However, ultimately, the mechanism for referencing a
schema is up to the media type of the instance documents (if they
choose to specify that schemas can be referenced).

4.1. Self-Descriptive Schema TOC

JSON Schemas can themselves be described using JSON Schemas. A self-
describing JSON Schema for the core JSON Schema can be found at http://
json-schema.org/schema for the latest version or http://json-
schema.org/draft-03/schema for the draft-03 version. The hyper schema
self-description can be found at http://json-schema.org/hyper-schema or
http://json-schema.org/draft-03/hyper-schema. All schemas used within a
protocol with media type definitions SHOULD include a MIME parameter
that refers to the self-descriptive hyper schema or another schema that
extends this hyper schema:

Content-Type: application/json;
profile=http://json-schema.org/draft-03/hyper-schema

5. Core Schema Definition TOC

A JSON Schema is a JSON Object that defines various attributes
(including usage and valid values) of a JSON value. JSON Schema has
recursive capabilities; there are a number of elements in the structure
that allow for nested JSON Schemas.

An example JSON Schema definition could look like:

http://json-schema.org/schema
http://json-schema.org/schema
http://json-schema.org/draft-03/schema
http://json-schema.org/draft-03/schema
http://json-schema.org/hyper-schema
http://json-schema.org/draft-03/hyper-schema

"description":"A person",
"type":"object",

"properties":{
"name": {"type":"string"},
"age" :{
"type":"integer",
"maximum":125
}
3
3

A JSON Schema object may have any of the following properties, called
schema attributes (all attributes are optional):

5.1. type TOC

This attribute defines what the primitive type or the schema of the
instance MUST be in order to validate. This attribute can take one of
two forms:

Simple Types A string indicating a primitive or simple type. The
following are acceptable string values:

string Value MUST be a string.

number Value MUST be a number, floating point numbers are
allowed.

integer Value MUST be an integer, no floating point numbers
are allowed. This is a subset of the number type.

boolean Value MUST be a boolean.
object Value MUST be an object.
array Value MUST be an array.

null Value MUST be null. Note this is mainly for purpose of
being able use union types to define nullability. If this
type is not included in a union, null values are not
allowed (the primitives listed above do not allow nulls on
their own).

any Value MAY be of any type including null.
If the property is not defined or is not in this list, then any

type of value is acceptable. Other type values MAY be used for
custom purposes, but minimal validators of the specification

implementation can allow any instance value on unknown type
values.

Union Types An array of two or more simple type definitions. Each
item in the array MUST be a simple type definition or a schema.
The instance value is valid if it is of the same type as one of
the simple type definitions, or valid by one of the schemas, in
the array.

For example, a schema that defines if an instance can be a string or a
number would be:

{"type":["string", "number"]}

5.2. properties TOC

This attribute is an object with property definitions that define the
valid values of instance object property values. When the instance
value is an object, the property values of the instance object MUST
conform to the property definitions in this object. In this object,
each property definition's value MUST be a schema, and the property's
name MUST be the name of the instance property that it defines. The
instance property value MUST be valid according to the schema from the
property definition. Properties are considered unordered, the order of
the instance properties MAY be in any order.

5.3. patternProperties TOC

This attribute is an object that defines the schema for a set of
property names of an object instance. The name of each property of this
attribute's object is a regular expression pattern in the ECMA 262/Perl
5 format, while the value is a schema. If the pattern matches the name
of a property on the instance object, the value of the instance's
property MUST be valid against the pattern name's schema value.

5.4. additionalProperties TOC

This attribute defines a schema for all properties that are not
explicitly defined in an object type definition. If specified, the
value MUST be a schema or a boolean. If false is provided, no
additional properties are allowed beyond the properties defined in the
schema. The default value is an empty schema which allows any value for
additional properties.

5.5. items TOC

This attribute defines the allowed items in an instance array, and MUST
be a schema or an array of schemas. The default value is an empty
schema which allows any value for items in the instance array.

When this attribute value is a schema and the instance value is an
array, then all the items in the array MUST be valid according to the
schema.

When this attribute value is an array of schemas and the instance value
is an array, each position in the instance array MUST conform to the
schema in the corresponding position for this array. This called tuple
typing. When tuple typing is used, additional items are allowed,
disallowed, or constrained by the "additionalItems" (additionalItems)
attribute using the same rules as "additionalProperties"
(additionalProperties) for objects.

5.6. additionalItems TOC

This provides a definition for additional items in an array instance
when tuple definitions of the items is provided. This can be false to
indicate additional items in the array are not allowed, or it can be a
schema that defines the schema of the additional items.

5.7. required TOC

This attribute indicates if the instance must have a value, and not be
undefined. This is false by default, making the instance optional.

5.8. dependencies TOC

This attribute is an object that defines the requirements of a property
on an instance object. If an object instance has a property with the
same name as a property in this attribute's object, then the instance
must be valid against the attribute's property value (hereafter
referred to as the "dependency value").

The dependency value can take one of two forms:

Simple Dependency If the dependency value is a string, then the
instance object MUST have a property with the same name as the
dependency value. If the dependency value is an array of strings,
then the instance object MUST have a property with the same name
as each string in the dependency value's array.

Schema Dependency
If the dependency value is a schema, then the
instance object MUST be valid against the schema.

5.9. minimum TOC

This attribute defines the minimum value of the instance property when
the type of the instance value is a number.

5.10. maximum TOC

This attribute defines the maximum value of the instance property when
the type of the instance value is a number.

5.11. exclusiveMinimum TOC

This attribute indicates if the value of the instance (if the instance
is a number) can not equal the number defined by the "minimum"
attribute. This is false by default, meaning the instance value can be
greater then or equal to the minimum value.

5.12. exclusiveMaximum TOC
This attribute indicates if the value of the instance (if the instance
is a number) can not equal the number defined by the "maximum"

attribute. This is false by default, meaning the instance value can be
less then or equal to the maximum value.

5.13. minItems TOC

This attribute defines the minimum number of values in an array when
the array is the instance value.

T0C

5.14. maxItems

This attribute defines the maximum number of values in an array when
the array is the instance value.

5.15. uniqueItems TOC

This attribute indicates that all items in an array instance MUST be

unique (contains no two identical values).

Two instance are consider equal if they are both of the same type and:
are null; or

are booleans/numbers/strings and have the same value; or

are arrays, contains the same number of items, and each item in the
array is equal to the corresponding item in the other array; or

are objects, contains the same property names, and each property in

the object is equal to the corresponding property in the other
object.

5.16. pattern TOC
When the instance value is a string, this provides a regular expression
that a string instance MUST match in order to be valid. Regular

expressions SHOULD follow the regular expression specification from
ECMA 262/Perl 5

5.17. minLength TOC

When the instance value is a string, this defines the minimum length of
the string.

5.18. maxLength TOC

When the instance value is a string, this defines the maximum length of
the string.

T0C

5.19. enum

This provides an enumeration of all possible values that are valid for
the instance property. This MUST be an array, and each item in the
array represents a possible value for the instance value. If this
attribute is defined, the instance value MUST be one of the values in
the array in order for the schema to be valid. Comparison of enum
values uses the same algorithm as defined in "uniqueItems"
(uniqueItems).

5.20. default TOC

This attribute defines the default value of the instance when the
instance is undefined.

5.21. title T0C

This attribute is a string that provides a short description of the
instance property.

5.22. description TOC

This attribute is a string that provides a full description of the of
purpose the instance property.

5.23. format TOC

This property defines the type of data, content type, or microformat to
be expected in the instance property values. A format attribute MAY be
one of the values listed below, and if so, SHOULD adhere to the
semantics describing for the format. A format SHOULD only be used to
give meaning to primitive types (string, integer, number, or boolean).
Validators MAY (but are not required to) validate that the instance
values conform to a format. The following formats are predefined:

date-time This SHOULD be a date in ISO 8601 format of YYYY-MM-
DDThh:mm:ssZ in UTC time. This is the recommended form of date/
timestamp.

date This SHOULD be a date in the format of YYYY-MM-DD. It is
recommended that you use the "date-time" format instead of "date"
unless you need to transfer only the date part.

time
This SHOULD be a time in the format of hh:mm:ss. It is
recommended that you use the "date-time" format instead of "time"
unless you need to transfer only the time part.

utc-millisec This SHOULD be the difference, measured in
milliseconds, between the specified time and midnight, 00:00 of
January 1, 1970 UTC. The value SHOULD be a number (integer or
float).

regex A regular expression, following the regular expression
specification from ECMA 262/Perl 5.

color This is a CSS color (like "#FF0000" or "red"), based on CSS
2.1 (Hickson, I., Lie, H., Celik, T., and B. Bos, *“Cascading
Style Sheets Level 2 Revision 1 (CSS 2.1) Specification,”
July 2007.) [W3C.CR-CSS21-20070719].

style This is a CSS style definition (like "color: red; background-
color:#FFF"), based on CSS 2.1 (Hickson, I., Lie, H., Celik, T.,
and B. Bos, “Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)
Specification,” July 2007.) [W3C.CR-CSS21-20070719].

phone This SHOULD be a phone number (format MAY follow E.123).
uri This value SHOULD be a URI..
email This SHOULD be an email address.
ip-address This SHOULD be an ip version 4 address.
ipvé This SHOULD be an ip version 6 address.
host-name This SHOULD be a host-name.
Additional custom formats MAY be created. These custom formats MAY be

expressed as an URI, and this URI MAY reference a schema of that
format.

5.24. divisibleBy TOC
This attribute defines what value the number instance must be divisible

by with no remainder (the result of the division must be an integer.)
The value of this attribute SHOULD NOT be 0.

T0C

5.25. disallow

This attribute takes the same values as the "type" attribute, however
if the instance matches the type or if this value is an array and the
instance matches any type or schema in the array, then this instance is
not valid.

5.26. extends TOC

The value of this property MUST be another schema which will provide a
base schema which the current schema will inherit from. The inheritance
rules are such that any instance that is valid according to the current
schema MUST be valid according to the referenced schema. This MAY also
be an array, in which case, the instance MUST be valid for all the
schemas in the array. A schema that extends another schema MAY define
additional attributes, constrain existing attributes, or add other
constraints.

Conceptually, the behavior of extends can be seen as validating an
instance against all constraints in the extending schema as well as the
extended schema(s). More optimized implementations that merge schemas
are possible, but are not required. An example of using "extends":

{
"description":"An adult",
"properties":{"age":{"minimum": 21}},
"extends":"person"

}

{
"description":"Extended schema",
"properties":{"deprecated":{"type": "boolean"}},
"extends":"http://json-schema.org/draft-03/schema"

}

5.27. id TOC

This attribute defines the current URI of this schema (this attribute
is effectively a "self" link). This URI MAY be relative or absolute. If
the URI is relative it is resolved against the current URI of the
parent schema it is contained in. If this schema is not contained in
any parent schema, the current URI of the parent schema is held to be
the URI under which this schema was addressed. If id is missing, the
current URI of a schema is defined to be that of the parent schema. The
current URI of the schema is also used to construct relative references
such as for $ref.

5.28. $ref ToC

This attribute defines a URI of a schema that contains the full
representation of this schema. When a validator encounters this
attribute, it SHOULD replace the current schema with the schema
referenced by the value's URI (if known and available) and re-validate
the instance. This URI MAY be relative or absolute, and relative URIs
SHOULD be resolved against the URI of the current schema.

5.29. $schema TOC

This attribute defines a URI of a JSON Schema that is the schema of the
current schema. When this attribute is defined, a validator SHOULD use
the schema referenced by the value's URI (if known and available) when
resolving Hyper Schema (Hyper Schema) links (1inks).

A validator MAY use this attribute's value to determine which version
of JSON Schema the current schema is written in, and provide the
appropriate validation features and behavior. Therefore, it is
RECOMMENDED that all schema authors include this attribute in their
schemas to prevent conflicts with future JSON Schema specification
changes.

6. Hyper Schema TOC

The following attributes are specified in addition to those attributes
that already provided by the core schema with the specific purpose of
informing user agents of relations between resources based on JSON
data. Just as with JSON schema attributes, all the attributes in hyper
schemas are optional. Therefore, an empty object is a valid (non-
informative) schema, and essentially describes plain JSON (no
constraints on the structures). Addition of attributes provides
additive information for user agents.

6.1. 1links TOC
The value of the links property MUST be an array, where each item in

the array is a link description object which describes the 1link
relations of the instances.

T0C

6.1.1. Link Description Object

A link description object is used to describe link relations. In the
context of a schema, it defines the link relations of the instances of
the schema, and can be parameterized by the instance values. The link
description format can be used on its own in regular (non-schema
documents), and use of this format can be declared by referencing the
normative link description schema as the the schema for the data
structure that uses the links. The URI of the normative 1link
description schema is: http://json-schema.org/links (latest version) or
http://json-schema.org/draft-03/1inks (draft-03 version).

6.1.1.1. href T0C

The value of the "href" link description property indicates the target
URI of the related resource. The value of the instance property SHOULD
be resolved as a URI-Reference per RFC 3986 (Berners-Lee, T., Fielding,
R., and L. Masinter, “Uniform Resource Identifier (URI): Generic
Syntax,” January 2005.) [RFC3986] and MAY be a relative URI. The base
URI to be used for relative resolution SHOULD be the URI used to
retrieve the instance object (not the schema) when used within a
schema. Also, when links are used within a schema, the URI SHOULD be
parametrized by the property values of the instance object, if property
values exist for the corresponding variables in the template (otherwise
they MAY be provided from alternate sources, like user input).

Instance property values SHOULD be substituted into the URIs where
matching braces ('{', '}') are found surrounding zero or more
characters, creating an expanded URI. Instance property value
substitutions are resolved by using the text between the braces to
denote the property name from the instance to get the value to
substitute. For example, if an href value is defined:

http://somesite.com/{id}

Then it would be resolved by replace the value of the "id" property
value from the instance object. If the value of the "id" property was
"45", the expanded URI would be:

http://somesite.com/45

If matching braces are found with the string "@" (no quotes) between
the braces, then the actual instance value SHOULD be used to replace
the braces, rather than a property value. This should only be used in
situations where the instance is a scalar (string, boolean, or number),
and not for objects or arrays.

T0C

http://json-schema.org/links
http://json-schema.org/draft-03/links

6.1.1.2. rel

The value of the "rel" property indicates the name of the relation to
the target resource. The relation to the target SHOULD be interpreted
as specifically from the instance object that the schema (or sub-
schema) applies to, not just the top level resource that contains the
object within its hierarchy. If a resource JSON representation contains
a sub object with a property interpreted as a link, that sub-object
holds the relation with the target. A relation to target from the top
level resource MUST be indicated with the schema describing the top
level JSON representation.

Relationship definitions SHOULD NOT be media type dependent, and users
are encouraged to utilize existing accepted relation definitions,
including those in existing relation registries (see RFC 4287
(Nottingham, M., Ed. and R. Sayre, Ed., “The Atom Syndication Format,”
December 2005.) [RFC4287]). However, we define these relations here for
clarity of normative interpretation within the context of JSON hyper
schema defined relations:

self If the relation value is "self", when this property is
encountered in the instance object, the object represents a
resource and the instance object is treated as a full
representation of the target resource identified by the specified
URT.

full This indicates that the target of the link is the full
representation for the instance object. The object that contains
this link possibly may not be the full representation.

describedby This indicates the target of the link is the schema for
the instance object. This MAY be used to specifically denote the
schemas of objects within a JSON object hierarchy, facilitating
polymorphic type data structures.

root This relation indicates that the target of the link SHOULD be
treated as the root or the body of the representation for the
purposes of user agent interaction or fragment resolution. All
other properties of the instance objects can be regarded as meta-
data descriptions for the data.

The following relations are applicable for schemas (the schema as the
"from" resource in the relation):

instances This indicates the target resource that represents
collection of instances of a schema.

create This indicates a target to use for creating new instances of
a schema. This link definition SHOULD be a submission link with a

non-safe method (like POST).

For example, if a schema is defined:

"links": [

{
"rel": "self"
Ilhrefll: Il{id}ll

}

{
Ilrelll: llupll
"href": "{upId}"

+

{
"rel": "children"
"href": "?upId={id}"

}

]
b

And if a collection of instance resource's JSON representation was
retrieved:

GET /Resource/

[
{
"id": "thing",
"upId": "parent"
t
{
"id": "thing2",
"upId": "parent"
}
1

This would indicate that for the first item in the collection, its own
(self) URI would resolve to "/Resource/thing" and the first item's "up"
relation SHOULD be resolved to the resource at "/Resource/parent". The
"children" collection would be located at "/Resource/?upId=thing".

6.1.1.3. targetSchema TOC

This property value is a schema that defines the expected structure of
the JSON representation of the target of the link.

TOC

6.1.1.4. Submission Link Properties

The following properties also apply to link definition objects, and
provide functionality analogous to HTML forms, in providing a means for
submitting extra (often user supplied) information to send to a server.

6.1.1.4.1. method T0C

This attribute defines which method can be used to access the target
resource. In an HTTP environment, this would be "GET" or "POST" (other
HTTP methods such as "PUT" and "DELETE" have semantics that are clearly
implied by accessed resources, and do not need to be defined here).
This defaults to "GET".

6.1.1.4.2. enctype TOC

If present, this property indicates a query media type format that the
server supports for querying or posting to the collection of instances
at the target resource. The query can be suffixed to the target URI to
query the collection with property-based constraints on the resources
that SHOULD be returned from the server or used to post data to the
resource (depending on the method). For example, with the following
schema:

{
"links":[
{
"enctype":"application/x-www-form-urlencoded",
"method" :"GET",
"href":"/Product/",
"properties":{
"name" :{"description":"name of the product"}
3
}
]
3

This indicates that the client can query the server for instances that
have a specific name:

/Product/?name=Slinky
If no enctype or method is specified, only the single URI specified by

the href property is defined. If the method is POST, "application/json"
is the default media type.

6.1.1.4.3. schema TOC

This attribute contains a schema which defines the acceptable structure
of the submitted request (for a GET request, this schema would define
the properties for the query string and for a POST request, this would
define the body).

6.2. fragmentResolution TOC

This property indicates the fragment resolution protocol to use for
resolving fragment identifiers in URIs within the instance
representations. This applies to the instance object URIs and all
children of the instance object's URIs. The default fragment resolution
protocol is "slash-delimited", which is defined below. Other fragment
resolution protocols MAY be used, but are not defined in this document.
The fragment identifier is based on RFC 2396, Sec 5 (Berners-lLee, T.,
Fielding, R., and L. Masinter, “Uniform Resource Identifiers (URI):
Generic Syntax,” August 1998.) [RFC2396], and defines the mechanism for
resolving references to entities within a document.

6.2.1. slash-delimited fragment resolution TOC

With the slash-delimited fragment resolution protocol, the fragment
identifier is interpreted as a series of property reference tokens that
start with and are delimited by the "/" character (\x2F). Each property
reference token is a series of unreserved or escaped URI characters.
Each property reference token SHOULD be interpreted, starting from the
beginning of the fragment identifier, as a path reference in the target
JSON structure. The final target value of the fragment can be
determined by starting with the root of the JSON structure from the
representation of the resource identified by the pre-fragment URI. If
the target is a JSON object, then the new target is the value of the
property with the name identified by the next property reference token
in the fragment. If the target is a JSON array, then the target is
determined by finding the item in array the array with the index
defined by the next property reference token (which MUST be a number).
The target is successively updated for each property reference token,
until the entire fragment has been traversed.

Property names SHOULD be URI-encoded. In particular, any "/" in a
property name MUST be encoded to avoid being interpreted as a property
delimiter.

For example, for the following JSON representation:

{

"foo":{
"anArray": [
{"prop":44}

1

"another prop":{
"baz":"A string"
}
3
3

The following fragment identifiers would be resolved:

fragment identifier resolution

self, the root of the resource itself

#/foo the object referred to by the foo property
#/foo/another%20prop the object referred to by the "another prop"

property of the object referred to by the
"foo" property
#/foo/another%20prop/baz the string referred to by the value of "baz"
property of the "another prop" property of
the object referred to by the "foo" property
#/foo/anArray/0 the first object in the "anArray" array

6.2.2. dot-delimited fragment resolution TOC

The dot-delimited fragment resolution protocol is the same as slash-
delimited fragment resolution protocol except that the "." character
(\X2E) is used as the delimiter between property names (instead of "/")
and the path does not need to start with a ".". For example, #.foo and
#foo are a valid fragment identifiers for referencing the value of the
foo propery.

6.3. readonly TOC

This attribute indicates that the instance property SHOULD NOT be
changed. Attempts by a user agent to modify the value of this property
are expected to be rejected by a server.

T0C

6.4. contentEncoding

If the instance property value is a string, this attribute defines that
the string SHOULD be interpreted as binary data and decoded using the
encoding named by this schema property. REC 2045, Sec 6.1 (Freed, N.
and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies,” November 1996.) [RFC2045]
lists the possible values for this property.

6.5. pathStart TOC

This attribute is a URI that defines what the instance's URI MUST start
with in order to validate. The value of the "pathStart" attribute MUST
be resolved as per RFC 3986, Sec 5 (Berners-Lee, T., Fielding, R., and
L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.) [RFC3986], and is relative to the instance's URI.

When multiple schemas have been referenced for an instance, the user
agent can determine if this schema is applicable for a particular
instance by determining if the URI of the instance begins with the the
value of the "pathStart" attribute. If the URI of the instance does not
start with this URI, or if another schema specifies a starting URI that
is longer and also matches the instance, this schema SHOULD NOT be
applied to the instance. Any schema that does not have a pathStart
attribute SHOULD be considered applicable to all the instances for
which it is referenced.

6.6. mediaType TOC

This attribute defines the media type of the instance representations
that this schema is defining.

7. Security Considerations TOC

This specification is a sub-type of the JSON format, and consequently
the security considerations are generally the same as RFC 4627
(Crockford, D., “The application/json Media Type for JavaScript Object
Notation (JSON),” July 2006.) [RFC4627]. However, an additional issue
is that when link relation of "self" is used to denote a full
representation of an object, the user agent SHOULD NOT consider the
representation to be the authoritative representation of the resource
denoted by the target URI if the target URI is not equivalent to or a
sub-path of the the URI used to request the resource representation
which contains the target URI with the "self" link. For example, if a
hyper schema was defined:

"links":[
{
"rel":"self",
"href":"{id}"
3
]
}

And a resource was requested from somesite.com:
GET /foo/
With a response of:

Content-Type: application/json; profile=/schema-for-this-data
[

{"id":"bar", "name":"This representation can be safely treated \
as authoritative "},

{"id":"/baz", "name":"This representation should not be treated as \
authoritative the user agent should make request the resource\
from "/baz" to ensure it has the authoritative representation"},

{"id":"http://othersite.com/something", "name":"This representation\
should also not be treated as authoritative and the target\
resource representation should be retrieved for the\
authoritative representation"}

8. IANA Considerations TOC

The proposed MIME media type for JSON Schema is "application/
schema+json".

Type name: application

Subtype name: schema+json

Required parameters: profile

The value of the profile parameter SHOULD be a URI (relative or
absolute) that refers to the schema used to define the structure of
this structure (the meta-schema). Normally the value would be http://
json-schema.org/draft-03/hyper-schema, but it is allowable to use other
schemas that extend the hyper schema's meta- schema.

Optional parameters: pretty

The value of the pretty parameter MAY be true or false to indicate if
additional whitespace has been included to make the JSON representation
easier to read.

T0C

8.1.

Registry of Link Relations

This registry is maintained by IANA per REC 4287 (Nottingham, M., Ed.

and

R. Sayre,

Ed., “The Atom Syndication Format,” December 2005.)

[RFC4287] and this specification adds four values: "full", "create",
"instances",
outlined in RFC 5226 (Narten, T. and H. Alvestrand, “Guidelines for

Writing an IANA Considerations Section in RFCs,” May 2008.) [RFC5226].

"root". New assignments are subject to IESG Approval, as

Requests should be made by email to IANA, which will then forward the
request to the IESG, requesting approval.

9. References TOC
9.1. Normative References
TOC
[RFC2045] | Freed, N. and N. Borenstein, “Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies,” RFC 2045, November 1996 (TXT).
[RFC2119] | Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).
[RFC2396] | Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform
Resource Identifiers (URI): Generic Syntax,” RFC 2396,
August 1998 (TXT, HTML, XML).
[RFC3339] | Klyne, G., Ed. and C. Newman, “Date and Time on the
Internet: Timestamps,” RFC 3339, July 2002 (TXT, HTML,
XML) .
[RFC3986] | Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” STD 66,
RFC 3986, January 2005 (TXT, HTML, XML).
[RFC4287] | Nottingham, M., Ed. and R. Sayre, Ed., “The Atom
Syndication Format,” RFC 4287, December 2005 (TXT, HTML,
XML) .
9.2. Informative References
TOC
[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk,
H., Masinter, L., Leach, P., and T. Berners-
Lee, “Hypertext Transfer Protocol -- HTTP/1.1,”
RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).
[RFC4627] Crockford, D., “The application/json Media Type

for JavaScript Object Notation (JSON),”
RFC 4627, July 2006 (TXT).

[RFC5226]

mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://www.rfc-editor.org/rfc/rfc2045.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:timbl@w3.org
mailto:fielding@ics.uci.edu
mailto:masinter@parc.xerox.com
http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc2396
http://www.rfc-editor.org/rfc/rfc2396.txt
http://xml.resource.org/public/rfc/html/rfc2396.html
http://xml.resource.org/public/rfc/xml/rfc2396.xml
mailto:GK@ACM.ORG
mailto:chris.newman@sun.com
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3339
http://www.rfc-editor.org/rfc/rfc3339.txt
http://xml.resource.org/public/rfc/html/rfc3339.html
http://xml.resource.org/public/rfc/xml/rfc3339.xml
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
mailto:mnot@pobox.com
mailto:rfsayre@boswijck.com
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287
http://www.rfc-editor.org/rfc/rfc4287.txt
http://xml.resource.org/public/rfc/html/rfc4287.html
http://xml.resource.org/public/rfc/xml/rfc4287.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt

Narten, T. and H. Alvestrand, “Guidelines for
Writing an IANA Considerations Section in
RFCs,” BCP 26, RFC 5226, May 2008 (TXT).

[I-D.hammer - Hammer -Lahav, E., “LRDD: Link-based Resource

discovery] Descriptor Discovery,” draft-hammer -
discovery-06 (work in progress), May 2010
(TXT).

[I-D.gregorio- Gregorio, J., Fielding, R., Hadley, M., and M.

uritemplate] Nottingham, “URI Template,” draft-gregorio-
uritemplate-04 (work in progress), March 2010
(TXT).

[I-D.nottingham- Nottingham, M., “Web Linking,” draft-

http-link-header] nottingham-http-link-header-10 (work in

progress), May 2010 (TXT).

[W3C.REC- Raggett, D., Hors, A., and I. Jacobs, “HTML
html401-19991224]

4.01 Specification,” World Wide Web Consortium
Recommendation REC-html401-19991224,
December 1999 (HTML).

CSS21-20070719]

[W3C.CR- Hickson, I., Lie, H., Celik, T., and B. Bos,
“Cascading Style Sheets Level 2 Revision 1 (CSS

2.1) Specification,” World wWide Web Consortium
CR CR-CSS21-20070719, July 2007 (HTML).

Appendix A.

Change Log TOC

draft-03* Added example and verbiage to "extends" attribute.

*Defined slash-delimited to use a leading slash.
*Made "root" a relation instead of an attribute.

*Removed address values, and MIME media type from format to
reduce confusion (mediaType already exists, so it can be
used for MIME types).

*Added more explanation of nullability.
*Removed "alternate" attribute.
*Upper cased many normative usages of must, may, and should.

*Replaced the link submission "properties" attribute to
"schema" attribute.

*Replaced "optional" attribute with "required" attribute.

*Replaced "maximumCanEqual" attribute with
"exclusiveMaximum" attribute.

*Replaced "minimumCanEqual" attribute with
"exclusiveMinimum" attribute.

http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://www.ietf.org/internet-drafts/draft-hammer-discovery-06.txt
http://www.ietf.org/internet-drafts/draft-hammer-discovery-06.txt
http://www.ietf.org/internet-drafts/draft-hammer-discovery-06.txt
http://www.ietf.org/internet-drafts/draft-gregorio-uritemplate-04.txt
http://www.ietf.org/internet-drafts/draft-gregorio-uritemplate-04.txt
http://www.ietf.org/internet-drafts/draft-nottingham-http-link-header-10.txt
http://www.ietf.org/internet-drafts/draft-nottingham-http-link-header-10.txt
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/2007/CR-CSS21-20070719
http://www.w3.org/TR/2007/CR-CSS21-20070719
http://www.w3.org/TR/2007/CR-CSS21-20070719

*Replaced "requires" attribute with "dependencies"
attribute.

*Moved "contentEncoding" attribute to hyper schema.

*Added "additionalItems" attribute.

*Added "id" attribute.

*Switched self-referencing variable substitution from "-
this" to "@" to align with reserved characters in URI
template.

*Added "patternProperties" attribute.

*Schema URIs are now namespace versioned.

*Added "$ref" and "$schema" attributes.

draft-02* Replaced "maxDecimal" attribute with "divisibleBy"
attribute.

*Added slash-delimited fragment resolution protocol and made
it the default.

*Added language about using links outside of schemas by
referencing its normative URI.

*Added "uniqueItems" attribute.
*Added "targetSchema" attribute to link description object.
draft-01* Fixed category and updates from template.

draft-00* Initial draft.

Appendix B. Open Issues TOC

Should we give a preference to MIME headers over Link headers (or
only use one)?

Should "root" be a MIME parameter?

Should "format" be renamed to "mediaType" or "contentType" to
reflect the usage MIME media types that are allowed?

How should dates be handled?

Authors'

Addresses

T0C

Kris Zyp (editor)

SitePen (USA)

530 Lytton Avenue

Palo Alto, CA 94301

USA

Phone: |[+1 650 968 8787
EMail: |kris@sitepen.com
Gary Court
Calgary, AB
Canada
EMail: |gary.court@gmail.com

mailto:kris@sitepen.com
mailto:gary.court@gmail.com

	A JSON Media Type for Describing the Structure and Meaning of JSON Documentsdraft-zyp-json-schema-03
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	3. Overview
	3.1. Terminology
	3.2. Design Considerations
	4. Schema/Instance Association
	4.1. Self-Descriptive Schema
	5. Core Schema Definition
	5.1. type
	5.2. properties
	5.3. patternProperties
	5.4. additionalProperties
	5.5. items
	5.6. additionalItems
	5.7. required
	5.8. dependencies
	5.9. minimum
	5.10. maximum
	5.11. exclusiveMinimum
	5.12. exclusiveMaximum
	5.13. minItems
	5.14. maxItems
	5.15. uniqueItems
	5.16. pattern
	5.17. minLength
	5.18. maxLength
	5.19. enum
	5.20. default
	5.21. title
	5.22. description
	5.23. format
	5.24. divisibleBy
	5.25. disallow
	5.26. extends
	5.27. id
	5.28. $ref
	5.29. $schema
	6. Hyper Schema
	6.1. links
	6.1.1. Link Description Object
	6.1.1.1. href
	6.1.1.2. rel
	6.1.1.3. targetSchema
	6.1.1.4. Submission Link Properties
	6.1.1.4.1. method
	6.1.1.4.2. enctype
	6.1.1.4.3. schema
	6.2. fragmentResolution
	6.2.1. slash-delimited fragment resolution
	6.2.2. dot-delimited fragment resolution
	6.3. readonly
	6.4. contentEncoding
	6.5. pathStart
	6.6. mediaType
	7. Security Considerations
	8. IANA Considerations
	8.1. Registry of Link Relations
	9. References
	9.1. Normative References
	9.2. Informative References
	Appendix A. Change Log
	Appendix B. Open Issues
	Authors' Addresses

