
Internet Engineering Task Force A. Wright, Ed.
Internet-Draft October 13, 2016
Intended status: Informational
Expires: April 16, 2017

JSON Schema: A Media Type for Describing JSON Documents
draft-wright-json-schema-00

Abstract

 JSON Schema defines the media type "application/schema+json", a JSON
 based format for describing the structure of JSON data. JSON Schema
 asserts what a JSON document must look like, ways to extract
 information from it, and how to interact with it, ideal for
 annotating existing JSON APIs that would not otherwise have
 hypermedia controls or be machine-readable.

Note to Readers

 The issues list for this draft can be found at <https://github.com/
json-schema-org/json-schema-spec/issues>.

 For additional information, see <http://json-schema.org/>.

 To provide feedback, use this issue tracker, the communication
 methods listed on the homepage, or email the document editors.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 16, 2017.

Wright Expires April 16, 2017 [Page 1]

https://github.com/json-schema-org/json-schema-spec/issues
https://github.com/json-schema-org/json-schema-spec/issues
http://json-schema.org/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft JSON Schema October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 3
3. Overview . 3
3.1. Validation . 3
3.2. Hypermedia and linking 4

4. Definitions . 4
4.1. JSON document . 4
4.2. instance . 4
4.3. instance equality . 5
4.4. JSON Schema document 5
4.5. Root schema and subschemas 6

5. General considerations 6
5.1. Range of JSON values 6
5.2. Programming language independence 6
5.3. Mathematical integers 7
5.4. Extending JSON Schema 7

6. The "$schema" keyword . 7
6.1. Purpose . 7

7. Schema references with $ref 7
8. Base URI and dereferencing 8
8.1. Initial base URI . 8
8.2. The "id" keyword . 8
8.2.1. Internal references 9
8.2.2. External references 10

9. Usage for hypermedia . 10
9.1. Linking to a schema 11
9.2. Describing a profile of JSON 11
9.3. Usage over HTTP . 12

10. Security considerations 12
11. IANA Considerations . 13
12. References . 13

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Wright Expires April 16, 2017 [Page 2]

Internet-Draft JSON Schema October 2016

12.1. Normative References 13
12.2. Informative References 13

Appendix A. Acknowledgments 15
Appendix B. ChangeLog . 15

 Author's Address . 16

1. Introduction

 JSON Schema is a JSON media type for defining the structure of JSON
 data. JSON Schema is intended to define validation, documentation,
 hyperlink navigation, and interaction control of JSON data.

 This specification defines JSON Schema core terminology and
 mechanisms, including pointing to another JSON Schema by reference,
 dereferencing a JSON Schema reference, specifying the vocabulary
 being used, and declaring the minimum functionality necessary for
 processing an instance against a schema.

 Other specifications define the vocabularies that perform assertions
 about validation, linking, annotation, navigation, and interaction.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The terms "JSON", "JSON text", "JSON value", "member", "element",
 "object", "array", "number", "string", "boolean", "true", "false",
 and "null" in this document are to be interpreted as defined in RFC

7159 [RFC7159].

3. Overview

 This document proposes a new media type "application/schema+json" to
 identify JSON Schema for describing JSON data. JSON Schemas are
 themselves written in JSON. This, and related specifications, define
 keywords allowing to describe this data in terms of allowable values,
 textual descriptions and interpreting relations with other resources.
 The following sections are a summary of features defined by related
 specifications.

3.1. Validation

 JSON Schema describes the structure of a JSON document (for instance,
 required properties and length limitations). Applications can use
 this information to validate instances (check that constraints are

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Wright Expires April 16, 2017 [Page 3]

Internet-Draft JSON Schema October 2016

 met), or inform interfaces to collect user input such that the
 constraints are satisfied.

 Validation behaviour and keywords are specified in a separate
 document [json-schema-validation].

3.2. Hypermedia and linking

 JSON Hyper-Schema describes the hypertext structure of a JSON
 document. This includes link relations from the instance to other
 resources, interpretation of instances as multimedia data, and
 submission data required to use an API.

 Hyper-schema behaviour and keywords are specified in a separate
 document [json-hyper-schema].

4. Definitions

4.1. JSON document

 A JSON document is an information resource (series of octets)
 described by the application/json media type.

 In JSON Schema, the terms "JSON document", "JSON text", and "JSON
 value" are interchangable because of the data model it defines.

4.2. instance

 JSON Schema interperts documents according to a data model. A JSON
 value interperted according to this data model is called an
 "instance".

 An instance has one of six primitive types, and a range of possible
 values depending on the type:

 null A JSON "null" production

 boolean A "true" or "false" value, from the JSON "true" or "false"
 productions

 object An unordered set of properties mapping a string to an
 instance, from the JSON "object" production

 array An ordered list of instances, from the JSON "array" production

 number An arbitrary-precision, base-10 decimal number value, from
 the JSON "number" production

Wright Expires April 16, 2017 [Page 4]

Internet-Draft JSON Schema October 2016

 string A string of Unicode code points, from the JSON "string"
 production

 Whitespace and formatting conserns are thus outside the scope of JSON
 Schema.

 Since an object cannot have two properties with the same key,
 behavior for a JSON document that tries to define two properties (the
 "member" production) with the same key (the "string" production) in a
 single object is undefined.

4.3. instance equality

 Two JSON instances are said to be equal if and only if they are of
 the same type and have the same value according to the data model.
 Specifically, this means:

 both are null; or

 both are true; or

 both are false; or

 both are strings, and are the same codepoint-for-codepoint; or

 both are numbers, and have the same mathematical value; or

 both are arrays, and have an equal value item-for-item; or

 both are objects, and each property in one has exactly one
 property with an equal key the other, and that other property has
 an equal value.

 Implied in this definition is that arrays must be the same length,
 objects must have the same number of members, properties in objects
 are unordered, there is no way to define multiple properties with the
 same key, and mere formatting differences (indentation, placement of
 commas, trailing zeros) are insignificant.

4.4. JSON Schema document

 A JSON Schema document, or simply a schema, is a JSON document used
 to describe an instance. A schema is itself interperted as an
 instance. A JSON schema MUST be an object.

 Properties that are used to describe the instance are called
 keywords, or schema keywords. The meaning of properties is specified
 by the vocabulary that the schema is using.

Wright Expires April 16, 2017 [Page 5]

Internet-Draft JSON Schema October 2016

 A JSON Schema MAY contain properties which are not schema keywords.
 Unknown keywords SHOULD be ignored.

 A schema that itself describes a schema is called a meta-schema.
 Meta-schemas are used to validate JSON Schemas and specify which
 vocabulary it is using.

 An empty schema is a JSON Schema with no properties, or only unknown
 properties.

4.5. Root schema and subschemas

 The root schema is the schema that comprises the entire JSON document
 in question.

 Some keywords take schemas themselves, allowing JSON Schemas to be
 nested:

 {
 "title": "root",
 "items": {
 "title": "array item"
 }
 }

 In this example document, the schema titled "array item" is a
 subschema, and the schema titled "root" is the root schema.

5. General considerations

5.1. Range of JSON values

 An instance may be any valid JSON value as defined by JSON [RFC7159].
 JSON Schema imposes no restrictions on type: JSON Schema can describe
 any JSON value, including, for example, null.

5.2. Programming language independence

 JSON Schema is programming language agnostic, and supports the full
 range of values described in the data model. Be aware, however, that
 some languages and JSON parsers may not be able to represent in
 memory the full range of values describable by JSON.

https://datatracker.ietf.org/doc/html/rfc7159

Wright Expires April 16, 2017 [Page 6]

Internet-Draft JSON Schema October 2016

5.3. Mathematical integers

 Some programming languages and parsers use different internal
 representations for floating point numbers than they do for integers.

 For constistency, integer JSON numbers SHOULD NOT be encoded with a
 fractional part.

5.4. Extending JSON Schema

 Implementations MAY define additional keywords to JSON Schema. Save
 for explicit agreement, schema authors SHALL NOT expect these
 additional keywords to be supported by peer implementations.
 Implementations SHOULD ignore keywords they do not support.

 Authors of extensions to JSON Schema are encouraged to write their
 own meta-schemas, which extend the existing meta-schemas using
 "allOf". This extended meta-schema SHOULD be referenced using the
 "$schema" keyword, to allow tools to follow the correct behaviour.

6. The "$schema" keyword

6.1. Purpose

 The "$schema" keyword is both used as a JSON Schema version
 identifier and the location of a resource which is itself a JSON
 Schema, which describes any schema written for this particular
 version.

 The root schema of a JSON Schema document SHOULD use this keyword.
 The value of this keyword MUST be a URI [RFC3986] (an "absolute"
 URI), and this URI MUST be normalized. The current schema MUST be
 valid against the meta-schema identified by this URI.

 Values for this property are defined in other documents and by other
 parties. JSON Schema implementations SHOULD implement support for
 current and previous published drafts of JSON Schema vocabularies as
 deemed reasonable.

7. Schema references with $ref

 Any time a subschema is expected, a schema may instead use an object
 containing a "$ref" property. The value of the $ref is a URI
 Reference. Resolved against the current URI base, it identifies the
 URI of a schema to use. All other properties in a "$ref" object MUST
 be ignored.

https://datatracker.ietf.org/doc/html/rfc3986

Wright Expires April 16, 2017 [Page 7]

Internet-Draft JSON Schema October 2016

 The URI is not a network locator, only an identifier. A schema need
 not be downloadable from the address if it is a network-addressible
 URL, and implementations SHOULD NOT assume they should perform a
 network operation when they encounter a network-addressible URI.

 A schema MUST NOT be run into an infinite loop against a schema. For
 example, if two schemas "#alice" and "#bob" both have an "allOf"
 property that refers to the other, a naive validator might get stuck
 in an infinite recursive loop trying to validate the instance.
 Schemas SHOULD NOT make use of infinite recursive nesting like this,
 the behavior is undefined.

8. Base URI and dereferencing

8.1. Initial base URI

RFC3986 Section 5.1 [RFC3986] defines how to determine the default
 base URI of a document.

 Informatively, the initial base URI of a schema is the URI it was
 found at, or a suitable substitute URI if none is known.

8.2. The "id" keyword

 The "id" keyword defines a URI for the schema, and the base URI that
 other URI references within the schema are resolved against. The
 "id" keyword itself is resolved against the base URI that the object
 as a whole appears in.

 If present, the value for this keyword MUST be a string, and MUST
 represent a valid URI-reference [RFC3986]. This value SHOULD be
 normalized, and SHOULD NOT be an empty fragment <#> or an empty
 string <>.

 The root schema of a JSON Schema document SHOULD contain an "id"
 keyword with an absolute-URI (containing a scheme, but no fragment).

 To name subschemas in a JSON Schema document, subschemas can use "id"
 to give themselves a document-local identifier. This form of "id"
 keyword MUST begin with a hash ("#") to identify it as a fragment URI
 reference, followed by a letter ([A-Za-z]), followed by any number of
 letters, digits ([0-9]), hyphens ("-"), underscores ("_"), colons
 (":"), or periods (".").

 For example:

https://datatracker.ietf.org/doc/html/rfc3986#section-5.1
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Wright Expires April 16, 2017 [Page 8]

Internet-Draft JSON Schema October 2016

 {
 "id": "http://example.com/root.json",
 "definitions": {
 "A": { "id": "#foo" },
 "B": {
 "id": "other.json",
 "definitions": {
 "X": { "id": "#bar" },
 "Y": { "id": "t/inner.json" }
 }
 },
 "C": {
 "id": "urn:uuid:ee564b8a-7a87-4125-8c96-e9f123d6766f"
 }
 }
 }

 The schemas at the following URI-encoded JSON Pointers [RFC6901]
 (relative to the root schema) have the following base URIs, and are
 identifiable by either URI:

 # (document root) http://example.com/root.json#

 #/definitions/A http://example.com/root.json#foo

 #/definitions/B http://example.com/other.json

 #/definitions/B/definitions/X http://example.com/other.json#bar

 #/definitions/B/definitions/Y http://example.com/t/inner.json

 #/definitions/C urn:uuid:ee564b8a-7a87-4125-8c96-e9f123d6766f

8.2.1. Internal references

 Schemas can be identified by any URI that has been given to them,
 including a JSON Pointer or their URI given directly by "id".

 Tools SHOULD take note of the URIs that schemas, including
 subschemas, provide for themselves using "id". This is known as
 "Internal referencing".

 For example, consider this schema:

https://datatracker.ietf.org/doc/html/rfc6901

Wright Expires April 16, 2017 [Page 9]

Internet-Draft JSON Schema October 2016

 {
 "id": "http://example.net/root.json",
 "items": {
 "type": "array",
 "items": { "$ref": "#item" }
 },
 "definitions": {
 "single": {
 "id": "#item",
 "type": "integer"
 },
 }
 }

 When an implementation encounters the <#/definitions/single> schema,
 it resolves the "id" URI reference against the current base URI to
 form <http://example.net/root.json#item>.

 When an implementation then looks inside the <#/items> schema, it
 encounters the <#item> reference, and resolves this to
 <http://example.net/root.json#item> which is understood as the schema
 defined elsewhere in the same document.

8.2.2. External references

 To differentiate schemas between each other in a vast ecosystem,
 schemas are identified by URI. As specified above, this does not
 necessarially mean anything is downloaded, but instead JSON Schema
 implementations SHOULD already understand the schemas they will be
 using, including the URIs that identify them.

 Implementations SHOULD be able to associate arbritrary URIs with an
 arbritrary schema and/or automatically associate a schema's "id"-
 given URI, depending on the trust that the the validator has in the
 schema.

 A schema MAY (and likely will) have multiple URIs, but there is no
 way for a URI to identify more than one schema. When multiple
 schemas try to identify with the same URI, validators SHOULD raise an
 error condition.

9. Usage for hypermedia

 One of the largest adoptors of JSON has been HTTP servers for
 automated APIs and robots. This section describes how to enhance
 processing of JSON documents in a more RESTful manner when used with
 protocols that support media types and Web linking [RFC5988].

https://datatracker.ietf.org/doc/html/rfc5988

Wright Expires April 16, 2017 [Page 10]

Internet-Draft JSON Schema October 2016

9.1. Linking to a schema

 It is RECOMMENDED that instances described by a schema/profile
 provide a link to a downloadable JSON Schema using the link relation
 "describedby", as defined by Linked Data Protocol 1.0, section 8.1
 [W3C.REC-ldp-20150226].

 In HTTP, such links can be attached to any response using the Link
 header [RFC5988]. An example of such a header would be:

 Link: <http://example.com/my-hyper-schema#>; rel="describedby"

9.2. Describing a profile of JSON

 Instances MAY specify a "profile" as described in The 'profile' Link
 Relation [RFC6906]. When used as a media-type parameter, HTTP
 servers gain the ability to perform Content-Type Negotiation based on
 profile. The media-type parameter MUST be a whitespace-separated
 list of URIs (i.e. relative references are invalid).

 The profile URI is opaque and SHOULD NOT automatically be
 dereferenced. If the implementation does not understand the
 semantics of the provided profile, the implementation can instead
 follow the "describedby" links, if any, which may provide information
 on how to handle the profile. Since "profile" doesn't necessarily
 point to a network location, the "describedby" relation is used for
 linking to a downloadable schema. However, for simplicity, schema
 authors should make these URIs point to the same resource when
 possible.

 In HTTP, the media-type parameter would be sent inside the Content-
 Type header:

 Content-Type: application/json;
 profile="http://example.com/my-hyper-schema#"

 Multiple profiles are whitespace seperated:

 Content-Type: application/json;
 profile="http://example.com/alice http://example.com/bob"

https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6906

Wright Expires April 16, 2017 [Page 11]

Internet-Draft JSON Schema October 2016

 HTTP can also send the "profile" in a Link, though this may impact
 media-type semantics and Content-Type negotiation if this replaces
 the media-type parameter entirely:

 Link: </alice>;rel="profile", </bob>;rel="profile"

9.3. Usage over HTTP

 When used for hypermedia systems over a network, HTTP [RFC7231] is
 frequently the protocol of choice for distributing schemas.
 Misbehaved clients can pose problems for server maintainers if they
 pull a schema over the network more frequently than necessary, when
 it's instead possible to cache a schema for a long period of time.

 HTTP servers SHOULD set long-lived caching headers on JSON Schemas.
 HTTP clients SHOULD observe caching headers and not re-request
 documents within their freshness period. Distributed systems SHOULD
 make use of a shared cache and/or caching proxy.

 Clients SHOULD set or prepend a User-Agent header specific to the
 JSON Schema implementation or software product. Since symbols are
 listed in decreasing order of significance, the JSON Schema library
 name/version goes first, then the more generic HTTP library name (if
 any). For example:

 User-Agent: so-cool-json-schema/1.0.2 curl/7.43.0

 Clients SHOULD be able to make requests with a "From" header so that
 server operators can contact the owner of a potentially misbehaving
 script.

10. Security considerations

 Both schemas and instances are JSON values. As such, all security
 considerations defined in RFC 7159 [RFC7159] apply.

 Instances and schemas are both frequently witten by untrusted third
 parties, to be deployed on public Internet servers. Validators
 should take care that the parsing of schemas doesn't consume
 excessive system resources. Validators MUST NOT fall into an
 infinite loop.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Wright Expires April 16, 2017 [Page 12]

Internet-Draft JSON Schema October 2016

 Servers need to take care that malicious parties can't change the
 functionality of existing schemas by uploading a schema with an pre-
 existing or very similar "id".

 Individual JSON Schema vocabularies are liable to also have their own
 security considerations. Consult the respective specifications for
 more information.

11. IANA Considerations

 The proposed MIME media type for JSON Schema is defined as follows:

 type name: application;

 subtype name: schema+json.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [W3C.REC-ldp-20150226]
 Speicher, S., Arwe, J., and A. Malhotra, "Linked Data
 Platform 1.0", World Wide Web Consortium Recommendation
 REC-ldp-20150226, February 2015,
 <http://www.w3.org/TR/2015/REC-ldp-20150226>.

12.2. Informative References

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/
RFC5988, October 2010,

 <http://www.rfc-editor.org/info/rfc5988>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
http://www.w3.org/TR/2015/REC-ldp-20150226
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc5988
http://www.rfc-editor.org/info/rfc5988

Wright Expires April 16, 2017 [Page 13]

Internet-Draft JSON Schema October 2016

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901, DOI
 10.17487/RFC6901, April 2013,
 <http://www.rfc-editor.org/info/rfc6901>.

 [RFC6906] Wilde, E., "The 'profile' Link Relation Type", RFC 6906,
 DOI 10.17487/RFC6906, March 2013,
 <http://www.rfc-editor.org/info/rfc6906>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI
 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [json-schema-validation]
 Wright, A. and G. Luff, "JSON Schema Validation: A
 Vocabulary for Structural Validation of JSON", draft-

wright-json-schema-validation-00 (work in progress),
 October 2016.

 [json-hyper-schema]
 Wright, A. and G. Luff, "JSON Hyper-Schema: A Vocabulary
 for Hypermedia Annotation of JSON", draft-wright-json-

schema-hyperschema-00 (work in progress), October 2016.

https://datatracker.ietf.org/doc/html/rfc6901
http://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/rfc6906
http://www.rfc-editor.org/info/rfc6906
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-hyperschema-00
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-hyperschema-00

Wright Expires April 16, 2017 [Page 14]

Internet-Draft JSON Schema October 2016

Appendix A. Acknowledgments

 Thanks to Gary Court, Francis Galiegue, Kris Zyp, and Geraint Luff
 for their work on the initial drafts of JSON Schema.

 Thanks to Jason Desrosiers, Daniel Perrett, Erik Wilde, Ben Hutton,
 Evgeny Poberezkin, and Henry H. Andrews for their submissions and
 patches to the document.

Appendix B. ChangeLog

 [[CREF1: This section to be removed before leaving Internet-Draft
 status.]]

draft-wright-json-schema-00

 * Updated references to JSON

 * Updated references to HTTP

 * Updated references to JSON Pointer

 * Behavior for "id" is now specified in terms of RFC3986

 * Aligned vocabulary usage for URIs with RFC3986

 * Removed reference to draft-pbryan-zyp-json-ref-03

 * Limited use of "$ref" to wherever a schema is expected

 * Added definition of the "JSON Schema data model"

 * Added additional security considerations

 * Defined use of subschema identifiers for "id"

 * Rewrote section on usage with HTTP

 * Rewrote section on usage with rel="describedBy" and
 rel="profile"

 * Fixed numerous invalid examples

draft-zyp-json-schema-04

 * Split validation keywords into separate document

draft-zyp-json-schema-00

https://datatracker.ietf.org/doc/html/draft-wright-json-schema-00
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/draft-pbryan-zyp-json-ref-03
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-04
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-00

Wright Expires April 16, 2017 [Page 15]

Internet-Draft JSON Schema October 2016

 * Initial draft.

 * Salvaged from draft v3.

 * Mandate the use of JSON Reference, JSON Pointer.

 * Define the role of "id". Define URI resolution scope.

 * Add interoperability considerations.

Author's Address

 Austin Wright (editor)

 EMail: aaa@bzfx.net

Wright Expires April 16, 2017 [Page 16]

