
Internet Engineering Task Force A. Wright, Ed.
Internet-Draft
Intended status: Informational G. Luff
Expires: April 16, 2017 October 13, 2016

JSON Schema Validation: A Vocabulary for Structural Validation of JSON
draft-wright-json-schema-validation-00

Abstract

 JSON Schema (application/schema+json) has several purposes, one of
 which is JSON instance validation. This document specifies a
 vocabulary for JSON Schema to describe the meaning of JSON documents,
 provide hints for user interfaces working with JSON data, and to make
 assertions about what a valid document must look like.

Note to Readers

 The issues list for this draft can be found at <https://github.com/
json-schema-org/json-schema-spec/issues>.

 For additional information, see <http://json-schema.org/>.

 To provide feedback, use this issue tracker, the communication
 methods listed on the homepage, or email the document editors.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 16, 2017.

Wright & Luff Expires April 16, 2017 [Page 1]

https://github.com/json-schema-org/json-schema-spec/issues
https://github.com/json-schema-org/json-schema-spec/issues
http://json-schema.org/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft JSON Schema Validation October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 3
3. Interoperability considerations 4
3.1. Validation of string instances 4
3.2. Validation of numeric instances 4
3.3. Regular expressions 4

4. General validation considerations 5
4.1. Keywords and instance primitive types 5
4.2. Missing keywords . 5
4.3. Linearity . 5

5. Validation keywords . 5
5.1. multipleOf . 6
5.2. maximum . 6
5.3. exclusiveMaximum . 6
5.4. minimum . 6
5.5. exclusiveMinimum . 6
5.6. maxLength . 7
5.7. minLength . 7
5.8. pattern . 7
5.9. additionalItems and items 7
5.10. maxItems . 8
5.11. minItems . 8
5.12. uniqueItems . 8
5.13. maxProperties . 9
5.14. minProperties . 9
5.15. required . 9
5.16. properties . 9
5.17. patternProperties . 9
5.18. additionalProperties 10
5.19. dependencies . 10
5.20. enum . 10

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Wright & Luff Expires April 16, 2017 [Page 2]

Internet-Draft JSON Schema Validation October 2016

5.21. type . 11
5.22. allOf . 11
5.23. anyOf . 11
5.24. oneOf . 11
5.25. not . 12
5.26. definitions . 12

6. Metadata keywords . 12
6.1. "title" and "description" 12
6.2. "default" . 13

7. Semantic validation with "format" 13
7.1. Foreword . 13
7.2. Implementation requirements 13
7.3. Defined formats . 14
7.3.1. date-time . 14
7.3.2. email . 14
7.3.3. hostname . 14
7.3.4. ipv4 . 14
7.3.5. ipv6 . 14
7.3.6. uri . 15
7.3.7. uriref . 15

8. Security considerations 15
9. IANA Considerations . 15
10. References . 15
10.1. Normative References 15
10.2. Informative References 16

Appendix A. Acknowledgments 17
Appendix B. ChangeLog . 17

 Authors' Addresses . 18

1. Introduction

 JSON Schema can be used to require that a given JSON document (an
 instance) satisfies a certain number of criteria. These criteria are
 asserted by using keywords described in this specification. In
 addition, a set of keywords is also defined to assist in interactive,
 user interface instance generation.

 This specification will use the terminology defined by the JSON
 Schema core [json-schema] specification.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Wright & Luff Expires April 16, 2017 [Page 3]

Internet-Draft JSON Schema Validation October 2016

 This specification uses the term "container instance" to refer to
 both array and object instances. It uses the term "children
 instances" to refer to array elements or object member values.

 This specification uses the term "property set" to refer to the set
 of an object's member names; for instance, the property set of JSON
 Object { "a": 1, "b": 2 } is ["a", "b"].

 Elements in an array value are said to be unique if no two elements
 of this array are equal [json-schema].

3. Interoperability considerations

3.1. Validation of string instances

 It should be noted that the nul character (\u0000) is valid in a JSON
 string. An instance to validate may contain a string value with this
 character, regardless of the ability of the underlying programming
 language to deal with such data.

3.2. Validation of numeric instances

 The JSON specification allows numbers with arbitrary precision, and
 JSON Schema does not add any such bounds. This means that numeric
 instances processed by JSON Schema can be arbitrarily large and/or
 have an arbitrarily long decimal part, regardless of the ability of
 the underlying programming language to deal with such data.

3.3. Regular expressions

 Two validation keywords, "pattern" and "patternProperties", use
 regular expressions to express constraints. These regular
 expressions SHOULD be valid according to the ECMA 262 [ecma262]
 regular expression dialect.

 Furthermore, given the high disparity in regular expression
 constructs support, schema authors SHOULD limit themselves to the
 following regular expression tokens:

 individual Unicode characters, as defined by the JSON
 specification [RFC7159];

 simple character classes ([abc]), range character classes ([a-z]);

 complemented character classes ([^abc], [^a-z]);

 simple quantifiers: "+" (one or more), "*" (zero or more), "?"
 (zero or one), and their lazy versions ("+?", "*?", "??");

https://datatracker.ietf.org/doc/html/rfc7159

Wright & Luff Expires April 16, 2017 [Page 4]

Internet-Draft JSON Schema Validation October 2016

 range quantifiers: "{x}" (exactly x occurrences), "{x,y}" (at
 least x, at most y, occurrences), {x,} (x occurrences or more),
 and their lazy versions;

 the beginning-of-input ("^") and end-of-input ("$") anchors;

 simple grouping ("(...)") and alternation ("|").

 Finally, implementations MUST NOT take regular expressions to be
 anchored, neither at the beginning nor at the end. This means, for
 instance, the pattern "es" matches "expression".

4. General validation considerations

4.1. Keywords and instance primitive types

 Most validation keywords only limit the range of values within a
 certain primitive type. When the primitive type of the instance is
 not of the type targeted by the keyword, the validation succeeds.

 For example, the "maxLength" keyword will only restrict certain
 strings (that are too long) from being valid. If the instance is a
 number, boolean, null, array, or object, the keyword passes
 validation.

4.2. Missing keywords

 Validation keywords that are missing never restrict validation. In
 some cases, this no-op behavior is identical to a keyword that exists
 with certain values, and these values are noted where known.

4.3. Linearity

 Validation keywords typically operate independent of each other,
 without affecting each other.

 For author convienence, there are some exceptions:

 "additionalProperties", whose behavior is defined in terms of
 "properties" and "patternProperties"; and

 "additionalItems", whose behavior is defined in terms of "items"

5. Validation keywords

 Validation keywords in a schema impose requirements for successfully
 validating an instance.

Wright & Luff Expires April 16, 2017 [Page 5]

Internet-Draft JSON Schema Validation October 2016

5.1. multipleOf

 The value of "multipleOf" MUST be a number, strictly greater than 0.

 A numeric instance is only valid if division by this keyword's value
 results in an integer.

5.2. maximum

 The value of "maximum" MUST be a number, representing an upper limit
 for a numeric instance.

 If the instance is a number, then this keyword validates if
 "exclusiveMaximum" is true and instance is less than the provided
 value, or else if the instance is less than or exactly equal to the
 provided value.

5.3. exclusiveMaximum

 The value of "exclusiveMaximum" MUST be a boolean, representing
 whether the limit in "maximum" is exclusive or not. An undefined
 value is the same as false.

 If "exclusiveMaximum" is true, then a numeric instance SHOULD NOT be
 equal to the value specified in "maximum". If "exclusiveMaximum" is
 false (or not specified), then a numeric instance MAY be equal to the
 value of "maximum".

5.4. minimum

 The value of "minimum" MUST be a number, representing a lower limit
 for a numeric instance.

 If the instance is a number, then this keyword validates if
 "exclusiveMinimum" is true and instance is greater than the provided
 value, or else if the instance is greater than or exactly equal to
 the provided value.

5.5. exclusiveMinimum

 The value of "exclusiveMinimum" MUST be a boolean, representing
 whether the limit in "minimum" is exclusive or not. An undefined
 value is the same as false.

 If "exclusiveMinimum" is true, then a numeric instance SHOULD NOT be
 equal to the value specified in "minimum". If "exclusiveMinimum" is
 false (or not specified), then a numeric instance MAY be equal to the
 value of "minimum".

Wright & Luff Expires April 16, 2017 [Page 6]

Internet-Draft JSON Schema Validation October 2016

5.6. maxLength

 The value of this keyword MUST be a non-negative integer.

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

 A string instance is valid against this keyword if its length is less
 than, or equal to, the value of this keyword.

 The length of a string instance is defined as the number of its
 characters as defined by RFC 7159 [RFC7159].

5.7. minLength

 A string instance is valid against this keyword if its length is
 greater than, or equal to, the value of this keyword.

 The length of a string instance is defined as the number of its
 characters as defined by RFC 7159 [RFC7159].

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

 "minLength", if absent, may be considered as being present with
 integer value 0.

5.8. pattern

 The value of this keyword MUST be a string. This string SHOULD be a
 valid regular expression, according to the ECMA 262 regular
 expression dialect.

 A string instance is considered valid if the regular expression
 matches the instance successfully. Recall: regular expressions are
 not implicitly anchored.

5.9. additionalItems and items

 The value of "additionalItems" MUST be either a boolean or an object.
 If it is an object, this object MUST be a valid JSON Schema.

 The value of "items" MUST be either a schema or array of schemas.

 Successful validation of an array instance with regards to these two
 keywords is determined as follows:

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Wright & Luff Expires April 16, 2017 [Page 7]

Internet-Draft JSON Schema Validation October 2016

 if "items" is not present, or its value is an object, validation
 of the instance always succeeds, regardless of the value of
 "additionalItems";

 if the value of "additionalItems" is boolean value true or an
 object, validation of the instance always succeeds;

 if the value of "additionalItems" is boolean value false and the
 value of "items" is an array, the instance is valid if its size is
 less than, or equal to, the size of "items".

 If either keyword is absent, it may be considered present with an
 empty schema.

5.10. maxItems

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

 An array instance is valid against "maxItems" if its size is less
 than, or equal to, the value of this keyword.

5.11. minItems

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

 An array instance is valid against "minItems" if its size is greater
 than, or equal to, the value of this keyword.

 If this keyword is not present, it may be considered present with a
 value of 0.

5.12. uniqueItems

 The value of this keyword MUST be a boolean.

 If this keyword has boolean value false, the instance validates
 successfully. If it has boolean value true, the instance validates
 successfully if all of its elements are unique.

 If not present, this keyword may be considered present with boolean
 value false.

Wright & Luff Expires April 16, 2017 [Page 8]

Internet-Draft JSON Schema Validation October 2016

5.13. maxProperties

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

 An object instance is valid against "maxProperties" if its number of
 properties is less than, or equal to, the value of this keyword.

5.14. minProperties

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

 An object instance is valid against "minProperties" if its number of
 properties is greater than, or equal to, the value of this keyword.

 If this keyword is not present, it may be considered present with a
 value of 0.

5.15. required

 The value of this keyword MUST be an array. This array MUST have at
 least one element. Elements of this array MUST be strings, and MUST
 be unique.

 An object instance is valid against this keyword if its property set
 contains all elements in this keyword's array value.

5.16. properties

 The value of "properties" MUST be an object. Each value of this
 object MUST be an object, and each object MUST be a valid JSON
 Schema.

 If absent, it can be considered the same as an empty object.

5.17. patternProperties

 The value of "patternProperties" MUST be an object. Each property
 name of this object SHOULD be a valid regular expression, according
 to the ECMA 262 regular expression dialect. Each property value of
 this object MUST be an object, and each object MUST be a valid JSON
 Schema.

 If absent, it can be considered the same as an empty object.

Wright & Luff Expires April 16, 2017 [Page 9]

Internet-Draft JSON Schema Validation October 2016

5.18. additionalProperties

 The value of "additionalProperties" MUST be a boolean or a schema.

 If "additionalProperties" is absent, it may be considered present
 with an empty schema as a value.

 If "additionalProperties" is true, validation always succeeds.

 If "additionalProperties" is false, validation succeeds only if the
 instance is an object and all properties on the instance were covered
 by "properties" and/or "patternProperties".

 If "additionalProperties" is an object, validate the value as a
 schema to all of the properties that weren't validated by
 "properties" nor "patternProperties".

5.19. dependencies

 This keyword specifies rules that are evaluated if the instance is an
 object and contains a certain property.

 This keyword's value MUST be an object. Each property specifies a
 dependency. Each dependency value MUST be an object or an array.

 If the dependency value is an object, it MUST be a valid JSON Schema.
 If the dependency key is a property in the instance, the dependency
 value must validate against the entire instance.

 If the dependency value is an array, it MUST have at least one
 element, each element MUST be a string, and elements in the array
 MUST be unique. If the dependency key is a property in the instance,
 each of the items in the dependency value must be a property that
 exists in the instance.

5.20. enum

 The value of this keyword MUST be an array. This array SHOULD have
 at least one element. Elements in the array SHOULD be unique.

 Elements in the array MAY be of any type, including null.

 An instance validates successfully against this keyword if its value
 is equal to one of the elements in this keyword's array value.

Wright & Luff Expires April 16, 2017 [Page 10]

Internet-Draft JSON Schema Validation October 2016

5.21. type

 The value of this keyword MUST be either a string or an array. If it
 is an array, elements of the array MUST be strings and MUST be
 unique.

 String values MUST be one of the seven primitive types defined by the
 core specification.

 An instance matches successfully if its primitive type is one of the
 types defined by keyword. Recall: "number" includes "integer".

5.22. allOf

 This keyword's value MUST be an array. This array MUST have at least
 one element.

 Elements of the array MUST be objects. Each object MUST be a valid
 JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against all schemas defined by this keyword's
 value.

5.23. anyOf

 This keyword's value MUST be an array. This array MUST have at least
 one element.

 Elements of the array MUST be objects. Each object MUST be a valid
 JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against at least one schema defined by this
 keyword's value.

5.24. oneOf

 This keyword's value MUST be an array. This array MUST have at least
 one element.

 Elements of the array MUST be objects. Each object MUST be a valid
 JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against exactly one schema defined by this
 keyword's value.

Wright & Luff Expires April 16, 2017 [Page 11]

Internet-Draft JSON Schema Validation October 2016

5.25. not

 This keyword's value MUST be an object. This object MUST be a valid
 JSON Schema.

 An instance is valid against this keyword if it fails to validate
 successfully against the schema defined by this keyword.

5.26. definitions

 This keyword's value MUST be an object. Each member value of this
 object MUST be a valid JSON Schema.

 This keyword plays no role in validation per se. Its role is to
 provide a standardized location for schema authors to inline JSON
 Schemas into a more general schema.

 As an example, here is a schema describing an array of positive
 integers, where the positive integer constraint is a subschema in
 "definitions":

 {
 "type": "array",
 "items": { "$ref": "#/definitions/positiveInteger" },
 "definitions": {
 "positiveInteger": {
 "type": "integer",
 "minimum": 0,
 "exclusiveMinimum": true
 }
 }
 }

6. Metadata keywords

6.1. "title" and "description"

 The value of both of these keywords MUST be a string.

 Both of these keywords can be used to decorate a user interface with
 information about the data produced by this user interface. A title
 will preferrably be short, whereas a description will provide
 explanation about the purpose of the instance described by this
 schema.

Wright & Luff Expires April 16, 2017 [Page 12]

Internet-Draft JSON Schema Validation October 2016

 Both of these keywords MAY be used in root schemas, and in any
 subschemas.

6.2. "default"

 There are no restrictions placed on the value of this keyword.

 This keyword can be used to supply a default JSON value associated
 with a particular schema. It is RECOMMENDED that a default value be
 valid against the associated schema.

 This keyword MAY be used in root schemas, and in any subschemas.

7. Semantic validation with "format"

7.1. Foreword

 Structural validation alone may be insufficient to validate that an
 instance meets all the requirements of an application. The "format"
 keyword is defined to allow interoperable semantic validation for a
 fixed subset of values which are accurately described by
 authoritative resources, be they RFCs or other external
 specifications.

 The value of this keyword is called a format attribute. It MUST be a
 string. A format attribute can generally only validate a given set
 of instance types. If the type of the instance to validate is not in
 this set, validation for this format attribute and instance SHOULD
 succeed.

7.2. Implementation requirements

 Implementations MAY support the "format" keyword. Should they choose
 to do so:

 they SHOULD implement validation for attributes defined below;

 they SHOULD offer an option to disable validation for this
 keyword.

 Implementations MAY add custom format attributes. Save for agreement
 between parties, schema authors SHALL NOT expect a peer
 implementation to support this keyword and/or custom format
 attributes.

Wright & Luff Expires April 16, 2017 [Page 13]

Internet-Draft JSON Schema Validation October 2016

7.3. Defined formats

7.3.1. date-time

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 date representation as defined by RFC 3339, section 5.6 [RFC3339].

7.3.2. email

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 Internet email address as defined by RFC 5322, section 3.4.1
 [RFC5322].

7.3.3. hostname

7.3.3.1. Applicability

 This attribute applies to string instances.

7.3.3.2. Validation

 A string instance is valid against this attribute if it is a valid
 representation for an Internet host name, as defined by RFC 1034,
 section 3.1 [RFC1034].

7.3.4. ipv4

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 representation of an IPv4 address according to the "dotted-quad" ABNF
 syntax as defined in RFC 2673, section 3.2 [RFC2673].

7.3.5. ipv6

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 representation of an IPv6 address as defined in RFC 2373, section 2.2
 [RFC2373].

https://datatracker.ietf.org/doc/html/rfc3339#section-5.6
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4.1
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc1034#section-3.1
https://datatracker.ietf.org/doc/html/rfc1034#section-3.1
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc2673#section-3.2
https://datatracker.ietf.org/doc/html/rfc2673
https://datatracker.ietf.org/doc/html/rfc2373#section-2.2
https://datatracker.ietf.org/doc/html/rfc2373

Wright & Luff Expires April 16, 2017 [Page 14]

Internet-Draft JSON Schema Validation October 2016

7.3.6. uri

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 URI, according to [RFC3986].

7.3.7. uriref

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 URI Reference (either a URI or a relative-reference), according to
 [RFC3986].

8. Security considerations

 JSON Schema validation defines a vocabulary for JSON Schema core and
 conserns all the security considerations listed there.

 JSON Schema validation allows the use of Regular Expressions, which
 have numerous different (often incompatible) implementations. Some
 implementations allow the embedding of arbritrary code, which is
 outside the scope of JSON Schema and MUST NOT be permitted. Regular
 expressions can often also be crafted to be extremely expensive to
 compute (with so-called "catastrophic backtracking"), resulting in a
 denial-of-service attack.

9. IANA Considerations

 This specification does not have any influence with regards to IANA.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [json-schema]
 "JSON Schema: A Media Type for Describing JSON Documents",

draft-wright-json-schema-00 (work in progress), October
 2016.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-00

Wright & Luff Expires April 16, 2017 [Page 15]

Internet-Draft JSON Schema Validation October 2016

10.2. Informative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <http://www.rfc-editor.org/info/rfc1034>.

 [RFC2373] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, DOI 10.17487/RFC2373, July 1998,
 <http://www.rfc-editor.org/info/rfc2373>.

 [RFC2673] Crawford, M., "Binary Labels in the Domain Name System",
RFC 2673, DOI 10.17487/RFC2673, August 1999,

 <http://www.rfc-editor.org/info/rfc2673>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322, DOI
 10.17487/RFC5322, October 2008,
 <http://www.rfc-editor.org/info/rfc5322>.

 [ecma262] "ECMA 262 specification", <http://www.ecma-
international.org/publications/files/ECMA-ST/
Ecma-262.pdf>.

https://datatracker.ietf.org/doc/html/rfc1034
http://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/rfc2373
http://www.rfc-editor.org/info/rfc2373
https://datatracker.ietf.org/doc/html/rfc2673
http://www.rfc-editor.org/info/rfc2673
https://datatracker.ietf.org/doc/html/rfc3339
http://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc5322
http://www.rfc-editor.org/info/rfc5322
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Wright & Luff Expires April 16, 2017 [Page 16]

Internet-Draft JSON Schema Validation October 2016

Appendix A. Acknowledgments

 Thanks to Gary Court, Francis Galiegue, Kris Zyp, and Geraint Luff
 for their work on the initial drafts of JSON Schema.

 Thanks to Jason Desrosiers, Daniel Perrett, Erik Wilde, Ben Hutton,
 Evgeny Poberezkin, and Henry H. Andrews for their submissions and
 patches to the document.

Appendix B. ChangeLog

 [[CREF1: This section to be removed before leaving Internet-Draft
 status.]]

draft-wright-json-schema-validation-00

 * Added additional security considerations

 * Removed reference to "latest version" meta-schema, use numbered
 version instead

 * Rephrased many keyword definitions for brevity

 * Added "uriref" format that also allows relative URI references

draft-fge-json-schema-validation-01

 * Initial draft.

 * Salvaged from draft v3.

 * Redefine the "required" keyword.

 * Remove "extends", "disallow"

 * Add "anyOf", "allOf", "oneOf", "not", "definitions",
 "minProperties", "maxProperties".

 * "dependencies" member values can no longer be single strings;
 at least one element is required in a property dependency
 array.

 * Rename "divisibleBy" to "multipleOf".

 * "type" arrays can no longer have schemas; remove "any" as a
 possible value.

 * Rework the "format" section; make support optional.

https://datatracker.ietf.org/doc/html/draft-wright-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-fge-json-schema-validation-01

Wright & Luff Expires April 16, 2017 [Page 17]

Internet-Draft JSON Schema Validation October 2016

 * "format": remove attributes "phone", "style", "color"; rename
 "ip-address" to "ipv4"; add references for all attributes.

 * Provide algorithms to calculate schema(s) for array/object
 instances.

 * Add interoperability considerations.

Authors' Addresses

 Austin Wright (editor)

 EMail: aaa@bzfx.net

 Geraint Luff

 EMail: luffgd@gmail.com

Wright & Luff Expires April 16, 2017 [Page 18]

